WHAT KIND OF NUMBER IS IT? **Natural Numbers** {1, 2, 3, 4.....} These are also called *Counting Numbers*, and they're the numbers that can be used for counting the fingers on your hands or the pieces of candy in a bowl. They don't include zero, negatives, or fractions. **Whole Numbers** {0, 1, 2, 3, 4.....} These include the natural (counting) numbers, but they also include zero. They don't include negatives or fractions, but they can describe how many cows are in a field as well as how many cows remain after they all leave. Integers {...-3, -2, -1, 0, 1, 2, 3...} These include the whole numbers (natural numbers and zero), and they also include negative numbers. They don't include fractions. **Rational Numbers** These are any numbers that can be expressed as a fraction, which includes all integers and most decimals. Examples include $$-\frac{1}{2}$$, 208, $\frac{2}{3}$, 0.66, $\frac{8}{-27}$, $\frac{-4}{1}$, -4, $\frac{19}{8}$, 0.75 Integers are rational numbers because $$2 = \frac{2}{1} \qquad -13 = \frac{-13}{1}$$ **Fractions** are rational numbers so long as their bottom number (the *denominator*) is not zero, because dividing anything by zero is impossible. Decimals are rational numbers so long as they either terminate, having a limited number of digits after the decimal point. For example, 0.25 and .07 are both terminating decimals. They can also be expressed as fractions: $$0.25 = \frac{1}{4}$$ $0.07 = \frac{7}{100}$ • **repeat,** having an unlimited number of digits after the decimal point that repeat in a regular pattern. For example, the decimals 0.666666... and 0.454545... are usually written as 0.6 and 0.45, although they can go on forever. They can also be expressed as fractions: $$0.6 = \frac{2}{3}$$ $0.45 = \frac{5}{11}$ ## **Irrational Numbers** These are any numbers that can't be written as fractions or as decimals that terminate or repeat. For example, the number pi (π) starts as 3.1415926... and continues for an infinite number of digits in no particular pattern. No fraction is equal to exactly that number. Similarly, the square root of two ($\sqrt{2}$) can be estimated as 1.4, but 1.4 * 1.4 does not equal 2 exactly. There is no fraction equaling any decimal which, multiplied by itself, equals two. ## **Real Numbers** These are all the rational numbers (including natural numbers, whole numbers, and integers) **and** all the irrational numbers. ## **Real Numbers** | Rational Numbers | Irrational Numbers | |------------------|--------------------| | | | | Integers | | | Whole Numbers | | | Natural Numbers | | | | |