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ABSTRACT. The Patterson-Gimlin Film (PGF) to date remains the clearest purported video evidence of the 

unrecognized bipedal primate known as “sasquatch”. Previous analysis of the (PGF) relied on manual manipulation 

of individual frames to stabilize the erratic camera motion and eliminate image noise and copying defects. We utilize 

modern computer vision algorithms and a large multi-copy film scan database to generate a mathematically optimal 

frame stabilization sequence with the clearest image quality restored to date. Eight independent prints of 150 frames 

of the PGF surrounding the lookback frame at Frame 354 (F354) photographed at close range with a 12-megapixel 

(MP) digital single lens reflex (DSLR) camera and were computationally aligned and merged per frame index with 

the SIFT algorithm (Lowe, 2004). The composited frames were then aligned to a stationary background scene from 

F354 using a 3D homography solved for with the RANSAC algorithm (Fischler, 1981). All composited frames were 

color corrected to the background scene by solving a linear regression per color channel between the composite frame 

and the background frame. The resulting composited frame sequence contained more original image detail and less 

artifacts than any individual copy. Our rendition is an unbiased machine optimized solution that is not susceptible to 

injected features from manual photo editing or neural net interpolation. The reduced visual distraction from camera 

motion and film defects plus the accuracy of our result to the camera original allows for clearer observation of both 

static and dynamic features of the filmed subject in future analyses. 

  

KEY WORDS: Feature detection, keypoints, homography, signal-to-noise ratio 

 

 

INTRODUCTION 

 

The Patterson-Gimlin Film (PGF), photo-

graphed on October 20, 1967, by Roger 

Patterson with Bob Gimlin as witness and co-

participant, is a historical artifact that needs 

little introduction. Countless amateur and 

published analysis efforts to confirm or debunk 

whether the film portrays a natural biological 

entity exactly as it appears, or an actor in a 

costume, have been undertaken over the last 

half century. Meldrum (2006) devoted a 

chapter to scientific reaction and critique of the 

PGF, while offering his own analysis of the 

comparative functional morphology and 

kinematics of the film subject.  Munns and 



                            RESTORATION AND STABILIZATION OF THE P-G FILM                     264 

 

 

 

Meldrum (2013a) analyzed the integrity of the 

physical film itself as well as anatomical 

comparisons between the PGF subject and 

extant apes and humans in two separate 

publications. Munns (2014) separately publish-

ed a non-peer-reviewed book detailing the 

history of the state of the art in creature suit 

design and the implications of the PGF subject 

in the context of the practices at the time.  

     While the PGF source material and attempts 

at anatomical and biomechanical analysis are 

not novel, each succeeding generation of 

research gains access to tools and techniques 

originating in other disciplines that allow for 

new interpretations of the same data. Previous 

analysis methods in both published and self-

promoted works relied on ad hoc manual 

manipulation to stabilize the camera shake and 

reduce image defects present in multi-

generation film copies. Such methods were 

seminal in bringing attention to the biological 

plausibility of the subject depicted in the film 

but were also labor intensive and prone to 

errors due to both individual bias and the 

imprecision of visual approximation compared 

to algorithmic solutions. 

     Previous work was also limited by the 

image quality of the source material. A long-

standing constraint of PGF analysis is the 

absence of the camera original film reel. As 

opposed to digital media, film loses clarity and 

gains noise with subsequent copying and is also 

subject to physical damage, such as scratching 

and tearing. Even if the camera original were 

procured, unless it has been carefully preserved 

in a climate-controlled environment it is likely 

to be substantially degraded from its original 

state. 

We improve on both these limitations with two 

contributions: 

 

1. We create composite frames using 8 

independent high quality, zoomed-in prints 

believed to be second generation copies 

from the ANE group (Munns and Meldrum, 

2013a). The copies were digitized by 

photographing each frame individually at 

close range with a 12-megapixel (MP) 

digital single lens reflex (DSLR) camera. 

Each frame index is aligned to all other 

copies with a mathematically optimal 

transformation and merged into a single 

frame to produce a composited result that 

combines the image detail from 8 different 

copies while increasing the signal to noise 

ratio (SNR) by a factor of √𝑛, where n = 8 

copies. 

2. We stabilize each frame to a reference 

background scene set as a high-quality first-

generation scan of frame 354 (F354). While 

previous manual alignment attempts only 

allowed for in-plane rotation and 2D 

translation for frame alignment, our 

computational method uses the RANSAC 

algorithm to solve for the full homography 

matrix that best aligned detected image 

feature pairs between individual frames and 

a stable background scene. This process 

allows for both pitch and yaw of the frame 

for a mathematically optimized 3-dimen-

sional alignment. 

 

     To our knowledge, individual frame SNR 

enhancement has never been achieved due to 

the lack of access to multiple high-quality 

scans of real film reels and the prohibitive 

amount of labor involved to accomplish an 8x 

align and composite for a large frame count. 

Previous attempts to clean up details in the PGF 

using image editing software can manipulate 

the noise and film artifacts present in a single 

copy but lack the ability to fill in missing data 

with pieces from other copies or boost SNR 

through multiple sampling. Computational 

stabilizations of the PGF have been attempted 

in recent years, with results posted on YouTube 

for public viewing. These stabilizations were 

performed on low resolution digitized single 

copies of the film made available for previous 

television productions with unknown copying 

histories and suffer from the same frame 

quality issues as the manual analysis efforts.     
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     Furthermore, computational stabilization 

was sometimes achieved with a convolutional 

neural network (CNN) and not an explicit 

modeling of the feature detection and 3D 

transformation. These architectures invariably 

introduce warping, distortion, and artifacts as 

they are globally visually convincing on full 

frames but locally very unstable on details.  

     Our method produced an SNR boosted 

composite frame sequence that was then 

stabilized as a playback with no artifacts or 

nonlinear distortions guaranteed by virtue of 

the mathematical model (Figure 1). We 

encoded our result to play back at 16 frames per 

second (fps) at 4k (3840 x 2160) resolution 

with no false details introduced by AI pixel 

supersampling or frame interpolation as is the 

case in prior unpublished attempts. This 

framerate was chosen based on the inferred 

camera running speed of the original K-100 

camera, which was 16 fps at the minimum and 

was typical at the time for amateur shoots with 

no accompanying soundtrack (Munns 2014). 

Contrary to previous computational stabiliza-

tions, our results are suitable for future close 

analysis of the anatomy and biomechanics of 

the film subject. 

 

METHODS 

 

Our methodological approach is summarized in 

Figure 2. Summarized it consisted of two main 

parts: 

  

1. Cleaning up individual frame quality by 

reducing noise and filling in missing data 

with multi-sample frame compositing 

2. Producing a high-quality video playback 

from the resulting frames with homography 

optimized motion stabilization. 

 

Multi-Sample Frame Compositing 

 

Individual multi-generational copies of the 

PGF accumulate random noise and non-

random film artifacts and lose detail that was 

present in the camera original with each 

successive copy. We mitigate the loss of detail 

in each individual copy by merging multiple 

high-resolution scans of different copies 

together. For each frame, we align all copies of 

that frame to a single master frame and merge 

them down into a multi-sample composite 

frame with a sampling factor of 8. 

     Individual frames benefited from multi-

sample compositing in two main ways: 

 

1. Reduction of non-randomly distributed 

defects, such as scratching or holes in the 

film 

2. Reduction of randomly distributed noise, 

both from the film copying process and the 

digital photography 

 

     Non-random defects are the result of 

physical damage to the film and do not occur 

uniformly within a frame or across different 

copies. These types of defects simply change 

the presence or absence of pixel data for a given 

frame in a given copy, typically by replacing 

the pixels with near black or near white damage 

artifacts. These artifacts are rarely present in 

the same place across multiple copies as they 

are the result of local contact damage and not 

global copying loss. A multi-sample compo-

sition of a frame will produce a result that has 

n “votes” for a color value at each pixel 

location, with the final composite result being 

the average. Outlier values such as damage 

artifacts will usually only hold a 1/n weighted 

vote in the average and thus be suppressed by a 

factor of n with more frame samples, provided 

the copies were independently made. A visual 

representation of filling in missing or damaged 

pixels with information from other copies is 

shown in Figure 3. 

     Global, randomly distributed noise (akin to 

static on an old TV) is the result of copying loss 

as well as digital photography sensor noise. 

Film grains are not uniformly arranged in fixed 

arrays and result in lossy reprojections where 

these grains misalign when copied from one 
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generation to the next. Furthermore, all digital 

devices exhibit some amount of dark current 

noise, visible as individual fluctuations in pixel 

color when taking a completely blacked out 

picture with the lens cap on. This can be 

probabilistically modeled as Gaussian noise 

with unknown mean and variance. Since we 

solve for the color transformation from each 

copy to the target background, we approximate 

the noise mean as 0 indicating zero color bias. 

A copied frame F can then be represented as the 

original frame μ plus random noise with 

standard deviation σ. 

 

F = N (μ, σ) (1) 

 

     The variance 𝜎𝐹
2 of �̅�, the average of n 

independent samples of F with the same 

standard deviation σ, is σ2/n by the definition of 

the variance. The signal-to-noise ratio (SNR) 

of �̅� can be defined as  

 

μ / 𝜎𝐹 =  μ√𝑛 / σ  (2) 

 

which increases by a factor of √𝑛 when 

compared to the single frame representation. 

Thus, physical defects of the film are 

suppressed and only have a magnitude of 1/n in 

the composite when present and the SNR 

resulting from random copying noise should 

increase by a factor of  √𝑛, which is 2.83 for 

n=8. A visualization of reducing random noise 

through multi-sample compositing is shown in 

Figure 4. Converging to the signal mean via 

averages of large numbers of samples is 

justified by the Law of Large Numbers. 

     We used the digitized PGF frame archive, 

collected as described in When Roger Met Patty 

(Munns, 2014), as the source material for our 

analysis. These scans represent the most widely 

sampled and highest quality digital scans 

known to date. Each individual frame was hand 

spooled across a backlight and photographed 

with a Canon EOS Digital Rebel XSi DSLR 

(resolution at 4272 x 2848). The camera 

parameters were as follows: f/7.1, ISO-1600, 

exposure 1/80s, and 100mm focal length. The 

images were saved as raw .CR2 files as well as 

JPG images. We worked with the camera-

provided JPG encoded images. We also 

produced alternative versions with PNG 

encoding from the .CR2 files. This changes the 

white balance and exposure from the JPG 

encoding but does not visually change the 

compression quality given the limited 

resolution of the film itself. We used the 

archive copy numbers 8 and 14, known 

internally as the ANE group. These two copies 

provided a total of 8 samples of 150 frames 

before and after the reference lookback frame 

at F354. Each copy was printed in 4x slow 

motion for use during a time in which 

broadcasts were printed on real film stock. 

Since the reel must run at a consistent speed, a 

0.25x slow motion sequence required each 

frame to be reproduced 4 times in series. Each 

reprint was a separate sample of the previous 

generation’s frame with independent film grain 

noise and potential damage. Thus, for our 

purposes they are each four independent copies 

for a total of 8 samples per frame. A close-up 

of a frame from Copy 8 is shown in Figure 5. 

     For each frame, the samples were aligned to 

a master copy computationally. Image feature 

detection was performed on both query and 

master frames using the Scale Invariant Feature 

Transform (SIFT) algorithm (Lowe, 2004). 

SIFT is a computer vision feature detection 

algorithm that converts image features into 

numerical vectors whose similarities can be 

compared across different image detections, 

known as keypoints. SIFT was performed on 

all copies of a frame, and feature matching was 

performed between n-1 copies and a single 

master copy by finding the nearest neighbors of 

the keypoints of each frame pair. The choice of 

master copy is arbitrary: we picked the first 

frame of Copy 8 in each 4-frame series as the 

master. We used the OpenCV implementation 

of SIFT with default parameters and 

programmed our solution entirely in Python 

3.4. A visualization of feature detection and 
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matching between two copies of the same 

frame is shown in Figure 6. 

     We solved for the planar homography 

between each query/master frame pair (7 total 

pairs) using the RANSAC algorithm from the 

matched feature detections in each pair. A 3D 

homography matrix representing the rotation 

and translation difference between two planes, 

the master and the query frame, can be 

calculated for each pair (Szeliski, 2010) and 

applied to each query frame to align its detected 

features to the corresponding features in the 

master copy. This transformation accounts for 

the slight differences in frame alignment and 

rotation relative to the DSLR sensor during 

scanning and can be calculated for the 1200 

total frames in a manner of minutes. The 

homography matrix is a 3x3 matrix that relates 

the 3D difference between two planes. A 

visualization of a homography transformation 

is shown in Figure 7. 

     A color correction operation was necessary 

due to the different biases introduced by the 

different film stocks and copying methods. 

This was done so a composite frame composed 

of many different source copies could be 

superposed onto a background frame without 

excessive visual distraction. We approximated 

the color shift of each frame with a linear 

equation  
 

c’ = mc + b  (3) 
 

where c’ is the target background color, c is the 

individual copy color, and m and b are the slope 

and intercept respectively of a linear 

relationship. For a single pixel index, this can 

be expressed as: 

  

[

𝑚𝑟 0 0 𝑏𝑟

0 𝑚𝑔 0 𝑏𝑔

0 0 𝑐𝑏 𝑏𝑏

] [

𝑐𝑟

𝑐𝑔

𝑐𝑏

1

] =  [

𝑐𝑟′

𝑐𝑔′

𝑐𝑏′

] (4) 

 

     We solved for m and b for each of the three 

channels R, G, B independently by aligning 

F354 from each copy to the background F354 

scan using the feature detection method 

described in the previous section. We take c 

and c’ from each pair of aligned pixels and 

create a 3n x 4 matrix by stacking all instances 

of equation 3 in row major order, where n is the 

number of aligned pixels in the image pair. We 

subsampled the pixels as using all pixel 

correspondences resulted in a matrix with n on 

the order of 106. We solve this system of linear 

equations with least squares optimization. 

     Although this color relationship is not 

guaranteed to be linear, it is a conservative 

model that can be solved quickly with linear 

matrix operations. Color mappings involving 

high order terms such as quadratics can be 

explored in future work. A demonstration of 

linear color correction is shown in Figure 8. 

 

 Homography Optimized Motion Stabilization 

 

The substantial motion in the original film 

makes it difficult to observe the subject in 

frame without excessive visual distraction. 

Furthermore, digital scanning of the film 

introduces yet another source of frame motion 

as the plane of the film is not guaranteed to be 

perfectly orthogonal and center aligned to the 

camera image plane in each copy. We correct 

for this motion using feature detection and 

homography transformation as described in the 

previous section. 

     In this use case, we take each composited 

frame and detect feature pairs between it and a 

single master background frame, in this case a 

high-resolution digital photo of a 1st generation 

4x5 inch print of F354 assembled by Bill 

Munns. We solve for an 8-degree-of-freedom 

homography matrix for each of the 150 frames 

that transforms each frame to the same 

perspective viewing plane as the background 

scene. This method is more accurate than 

previous attempts at stabilization using manual 

alignment due to its ability to account for two 

extra axes of rotation and perspective 

distortion, shown in Figure 9. Previous 

attempts could only rotate each frame in the 
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plane of the screen (the red Z axis) while 

neglecting the possibility of pitch and yaw and 

their associated perspective distortions.   

     We cropped the stabilized composite frames 

to a 16:9 ratio in a region zoomed in on the 

walk cycle in the 150-frame sequence and 

scaled the resolution to 4K (3840 x 2160). The 

cropped region was 3500 pixels wide, so a 

modest upsample of less than 10% using the 

Lanczos-4 algorithm was necessary. 

 

RESULTS 

 

We merged 8 copies of 150 frames (1200 

frames total) into a single stabilized 150 frame 

composite sequence cut to 4K resolution and 

encoded it at 16 fps with ffmpeg. Although not 

as clear as the camera original, whose 

sharpness can be estimated with the clarity of 

the 4 x 5-inch first generation print used as the 

background canvas, our result is noticeably 

clearer than any individual copy in our archive 

and any copy of the PGF shown to the public in 

the past. Our results may approximate the 

appearance of a clean, undamaged 1st 

generation copy, although this is difficult to 

confirm without the documentation of a 

confirmed first-generation reel. 

     We performed a synthetic benchmark using 

the 4x5 inch print of frame 354 to test the 

effectiveness of our method on gaussian noise. 

We randomly generated 8 lossy copies of this 

frame by adding to each pixel a random value 

sampled from a normal distribution N (0, 25). 

We merged the 8 copies into one composite 

image and compared the mean squared error 

(MSE) for pixel difference between the 

composite image and the original, as well as 

each of the individual copies. This simulates 

our method on an artificially generated dataset 

with a noise-free ground truth. The MSE for all 

8 individual noisy copies was 610, while the 

MSE for the composite was 77. This represents 

an 87% reduction in MSE in the composite 

image. The peak signal-to-noise ratios (PSNR) 

were 19.2 for the noisy copies and 28.2 for the 

composite, a 1.47x increase. This is below the 

theoretical 2.83x increase. Doubling the 

standard deviation of the noise to 50 does not 

change the MSE ratio but improves the PSNR 

ratio to 1.67. Our method may be more 

effective as the level of grain noise in the image 

increases, which is a desirable trend. These 

results are illustrated in Figure 10. 

     A close-up before and after comparison of 

the film subject is show in Figure 11. Before 

frames were sampled from the first frame of 

Copy 8 in the 4-frame sequence (C8-1). After 

frames are shown after an 8x alignment and 

composition with a linear color correction 

applied. Note the reduction of grain noise and 

suppression of physical scratches. 

     Three before and after frames showing full-

frame background detail are shown in Figure 

12. Note the elimination of the film defects 

around the right hip of the subject in the second 

and third rows. 

     A single frame example of the homography 

optimized alignment is shown in Figure 13. 

Keypoints from feature detection are not 

shown, but the final position of the corners of 

the query frame in the background frame is 

indicated. Frames were cropped before 

stabilization to remove the black film borders 

from the results. The composite frame on the 

left demonstrates an extreme example of filling 

in missing detail with other frames in the black 

margins, where half of the copies (all 4 prints 

of C8) excluded that portion of the frame while 

it was present in the other half. 

     A full 20 frame walk sequence is shown in 

Figure 14 to demonstrate the stability of 

homography optimization. Solving for the 

transformation matrix between composite 

frame and background frame produced much 

closer representations of 3D camera motion 

than manual manipulation. These results show 

that our method is robust to heavy distortion 

from motion blur. 

     Details observed in these restored frames 

can be annotated with much higher confidence 

than in previous work, as features present in our 
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results are likely to have persisted across 

multiple independent copies rather than simply 

being the product of an isolated copying error 

or damage artifact. Munns and Meldrum 

(2013b) remarked on the necessity of observing 

any proposed anatomical feature across 

multiple independent copies to establish 

confidence that it is in fact a feature of the true 

photographic record. Our results fold this cross 

referencing into a single frame sequence by 

heavily suppressing artifacts present only in 

isolated instances while amplifying the image 

signal that is common to all copies.  

  

DISCUSSION 

  

Advances in computational algorithms and the 

aggregation of many high-quality digital scans 

of various film copies allowed us to produce a 

clearer and more motion stabilized rendition of 

the PGF than what manual manipulation of 

singular degraded copies were capable of in the 

past five decades. Although this effort alone 

cannot resolve the question of what was really 

filmed on October 20th, 1967, a mathe-

matically optimized restoration of the film will 

hopefully allow a higher level of future 

analysis of and debate about the film subject 

absent a layer of visual distraction from image 

noise and motion that was assumed to be 

inextricable from the image data in the past. 

Furthermore, our restoration is reliably 

reproducible due to its foundations as a 

numerical optimization algorithm and is not 

subject to individual biases or errors that 

inevitably arise from various independent 

attempts to stabilize and enhance the film by 

hand in photo-editing software.  

     We did not include additional image 

manipulation tricks utilizing artificial intelli-

gence (AI) and deep-learning neural networks 

as part of our main method or results as these 

techniques create distortions and false details 

that are not reliable for anatomical or 

biomechanical analysis. Two common forms of 

video enhancement with deep learning are 

pixel interpolation and frame interpolation.  

     The first stretches the image to a higher 

resolution by expanding the original pixels to 

fill the desired dimensions, then making up the 

pixels in between using learned convolutional 

filters trained on thousands of other images. 

This is sometimes referred to as “AI 

superresolution” and is very susceptible to 

introducing false details. If an image is doubled 

in width and height, then a full 75% of all pixels 

in the result were generated by the deep neural 

network in an attempt to fill in the blanks 

between the low-resolution pixels. This 

contrasts with simply resizing the image with 

an interpolation algorithm, which uses a 

defined local mathematical function to 

transform the image to a new larger or smaller 

size without losing or introducing detail. We 

did not use superresolution because our frames 

were scanned at above 4K resolution, and 

because the result would not be faithful to the 

camera original.  

     The second form of AI enhancement, frame 

interpolation, generates entirely new frames 

between existing frames to create a playback 

that appears smoother than the original 

sequence. The generated frames in these 

methods are even less reliable than 

superresolution techniques because 100% of 

the resulting pixels in the new frames are 

synthesized. This can be applied recursively to 

exponentially increase the framerate of a video 

sequence, at the cost of reducing the fraction of 

ground-truth frames in the playback. At 4x 

interpolation playing at 64 fps, three out of 

every four frames are synthesized inter-

polations. (The 2x interpolation is doubled 

again, but with even less precision as each 

frame pair contains one real and one generated 

frame) 

     We processed our 16-fps video result with 

an implementation of RIFE-CNN (Huang, 

2020) to produce 32 fps and 64 fps high 

framerate playbacks as an exercise. The results 

are pleasing to the eye as it reduces the 

choppiness of the original playback rate 



                            RESTORATION AND STABILIZATION OF THE P-G FILM                     270 

 

 

 

substantially, but we maintain that any future 

analyses must refer back to the original 16 fps 

frame sequence to ensure all proposed features 

were present on the original film reel.  

     At most, the high framerate versions can 

help clarify or identify the motion and 

dynamics of the subject by smoothing out the 

playback in a way that is less distracting to a 

viewer’s eye. All hypotheses regarding 

dynamic features of the subject must be 

confirmed on the original 16 fps playback to 

ensure the observations are not of artifacts or 

distortions injected by the neural network. 

These hypotheses will still be inherently low 

confidence as starting an analysis with the high 

framerate render creates a huge potential for 

bias towards the predilections of the neural 

network output. An example of an interpolated 

frame with a subtle motion artifact is shown in 

Figure 15. 

     Our restoration and stabilization method 

were applied only to 8 copies of 150 frames of 

the film. As there are over 900 frames in the 

full sequence and over 20 PGF copies in the 

digital database compiled by Munns, there 

remains much room for improvement in the 

quality of the remainder of the PGF reel. 

However, regardless of how many copies we 

use in future multi-sample composites of the 

remainder of the film, it is likely that the results 

presented in this work are the best-case 

scenario for quality restoration. The frames of 

copies 8 and 14 were originally copied with 4x 

zoom projection to make the bipedal subject 

take up more of the frame, meaning the grain 

density on the subject itself is much higher than 

any of the other copies and the copying loss is 

minimal. These copies were also in relatively 

good condition compared to many of the other 

full reel scans, which suffer from increased 

prevalence of scratching and tearing. The use 

of many copies (up to 20 in some frames) may 

mitigate some of this damage, but the lower 

pixel density of the bipedal subject in these full 

frame copies is a fundamental limitation of the 

source data. 

 

CONCLUSIONS 

 

We present a method for restoring the 

Patterson-Gimlin Film to its best-to-date 

quality approximating that of a clean first 

generation copy by computationally aligning 

and merging 8 copies of the film down to one 

composite. We estimated that multi-sample 

frame compositing reduced the MSE of grain 

noise by 87% and physical damage artifacts by 

a factor of 8. We stabilized the composited 

frames onto a high-resolution background 

canvas by solving for a homography matrix 

that produced a mathematically optimal 

alignment on detected feature pairs between 

each composite frame and the stationary 

background. Our method was based on 

analytical, well understood, highly cited 

computational methods that are mathematically 

sound and did not rely on unverifiable deep 

learning filters to generate new pixel data. We 

believe this is the clearest, best stabilized, and 

most accurate version of the PGF rendered to 

date due to the quality and quantity of our 

source material and the mathematical 

optimality of our method. Future work can 

extend this method to the full 900+ frame PGF 

sequence or do more in-depth analysis of the 

proposed anatomical and biomechanical fea-

tures observed in the film subject. 
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Figure 1. Comparisons of a degraded 3rd gen copy (A) to our result (B) and a 1st generation, almost 

lossless 4x5 inch print (C). Note the reduction in scratches, appearance of static noise, and 

correction of washout colors. 
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Figure 2. Visual overview of method. A. Digital photos were taken of multiple physical copies of 

the same frame of film. Each copy contains different grain noise and film damage. B. Copies are 

computationally aligned and merged down into one frame using SIFT + RANSAC algorithms. 

This amplifies the film details that are common to all copies while suppressing the noise that is 

only present in a single copy. 8 copies were used in this work. C. We solved for a linear color 

correcting matrix for the red, green, and blue channels independently to correct the composite 

frame’s appearance to the target background frame, which is a high-resolution scan of a first 

generation 4x5 inch print of Frame 354. D. We aligned the color-corrected frame to the background 

frame with SIFT + RANSAC, which finds the best alignment based on the background scenery 

common to both images. E. We crop a 16:9 aspect ratio portion of the frame, resize it to 4K 

resolution, and compile the 150 total frames into a video playing at 16fps. 
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Figure 3. Restoration of non-random defects by filling in damage (light blue) or missing data 

(yellow) with the sum of image data from all copies. 
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Figure 4. Average of n samples boost SNR by a factor of √𝑛. This is analogous to the signal 

processing equivalent known as time synchronous averaging, where a noisy signal is averaged 

with repeated samples of itself to cancel out perturbations. The convergence of the average of n 

samples to the true mean value as n grows towards infinity is consistent with the fundamental 

principle of probability known as the Law of Large Numbers.  

 

Image credit: https://www.crystalinstruments.com/time-synchronous-average  

 

 

 

 

 

 

 

https://www.crystalinstruments.com/time-synchronous-average


    TIAN, MUNNS & MELDRUM                    277 
 

 

 

 

 

 

Figure 5. Zoomed in frame from Copy 8 showing pixelated random noise and a white pockmark 

from film damage near the right arm. 
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Figure 6. SIFT feature detection example between two copies. Red circles indicate keypoint 

with orientation, green lines indicate nearest neighbor matches. 
 

 

  



    TIAN, MUNNS & MELDRUM                    279 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Diagram from the OpenCV documentation showing how homography matrix H relates 

keypoint x in the query frame to the matched keypoint x’ in the master frame. 
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Figure 8. Left, a frame from Copy 8 with an elevated pink hue. Right, after color correction to the 

F354 background. 
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Figure 9. Manual on-screen manipulation in photo editing software only allows for rotation in the 

Z-axis (roll), whereas a 3D transformation contains pitch and yaw. 
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Figure 10. Left, the original 4x5 print. Middle, a noisy copy generated by adding N (0, 50) to all 

pixels. Right, result of merging 8 independent noisy copies into one frame. MSE reduced by 87% 

and PSNR increased by a factor of 1.67 relative to the single noisy copy. 
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Figure 11. Before and after multi-sample composition. Note the vertical copying defect and 

diagonal blemish on the original copy. 
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Figure 12. Six frames showing the before (left, single master copy) and after (right, 8x composite) 

frames after alignment, composition, and color correction. Note the reduction in the appearance of 

static noise and physical damage. 
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Figure 13. Motion stabilization of a single frame using homography. Red arrows show where the 

corners of the query frame were pasted into the background frame. 
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Figure 14. Twenty consecutive frames demonstrating the effects of homography computed motion 

stabilization. Notice how even in instances of extreme motion blur the walk cycle is relatively 

stable compared to adjacent frames. 
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Figure 15. An interpolated frame from a 2x interpolated, 32fps RIFE-CNN processing of our 

result. Although most of the body is visually indistinguishable from an original frame, there is an 

artifact introduced by incorrect motion tracking and interpolation of the arm circled in red. Other 

smaller distortions may be too subtle to see and cannot be depended on for ground truth 

information. 
 

 

 


